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LETTER TO THE EDITOR 

Position space renormalisation group for aggregation fractals 

R C Ball and B R Thompson 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 8 October 1984 

Abstract. A simple position space renormalisation group scheme is used to find the fractal 
dimension of Sutherland type aggregation clusters grown in low-dimensional space. 
Clusters which move along paths of fractal dimension d, = 0, 1, 2 are considered and a 
systematic variation in cluster fractal dimension matching that of recent computer simula- 
tions is found. 

Meakin (1983) and independently Kolb et al (1983) introduced a model of ‘kinetic 
clustering of clusters’ to describe the flocculation of colloids and aerosols. Thus far 
three different kinetics have been studied: clusters moving diffusively (Kolb et al 1983, 
Meakin 1983 and the experiments of Weitz and Oliveria 1984), clusters moving 
ballistically (P Meakin, to be published) and the kinetics of chemically limited aggrega- 
tion (CLA) (Schaeffer et a1 1984, D A Weitz and M Oliveria, private communication). 
CLA may be realised as a computer simulation in which a pair of clusters is collided 
by positioning them repeatedly at random in a box until they are adjacent but not 
intersecting (W D Brown and R C Ball, to be published). These three kinetics 
correspond to requiring that clusters move along paths having fractal dimensions 
d, = 2, 1, 0 respectively (Mandelbrot 1982). 

A particularly simple cluster-cluster aggregation model is the hierarchical model 
due originally to Sutherland (1967, 1970) which has been studied numerically in low 
dimensions (Botet et al 1984, Jullien et al 1984a, b, W D Brown, private communication) 
and theoretically in high dimensions (Ball 1984, Ball and Witten 1984). In this model 
one starts with No = 2k independent seed particles and constructs clusters iteratively. 
The ( q  + l th) iteration consists of forming No/2q+’ clusters each of 2q+1 particles. This 
is done by grouping the clusters formed in the qth iteration into pairs and colliding 
each pair of clusters. This process continues until one cluster of No particles is formed. 
We call a cluster of 2q particles a q cluster. All three kinetics, d ,  = 2, 1, 0 have been 
considered for this model (Jullien et a1 1984b, R Jullien and M Kolb, to be published, 
W D Brown, private communication). For ballistically moving clusters we consider 
only the case in which the impact parameter b is chosen randomly. We do not consider 
the case in which two clusters are always collided along a line through their centres 
of mass, i.e. b = 0 (Jullien 1984). 

Aggregation clusters can be partly characterised by how the number of particles in 
the cluster, N, scales with the cluster radius of gyration, R, N - R D ‘ d ’ ,  in the limit 
N + 00. Here D( d )  is the cluster fractal dimension and d is the dimension of Euclidean 
space in which the clusters form. Hentschel and Deutch (1984) suggested for Sutherland 
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clusters that 

D ( d )  = d ( 4 d  + 3 ) / ( 9 d  - 2 )  d < d , = 8  ( 1 )  

D ( d )  = d / 2  d > d ,  ( 2 )  

independent of kinetics. This result was found using an argument which required two 
lengths, the cluster radius of gyration and the distance two clusters interpenetrate 
before a collision. It is presumably wrong: for low d computer simulations show a 
systematic variation of D ( d )  with kinetics (see table 1 )  and for high d it has been 
shown (Ball and Witten 1984) that the exact answer is 

D ( d )  = D *  =In 4/ln ( 3 / 2 )  for d > d , = 2 D * +  d,. 

Table 1. Comparison of simulation results (Jullien et al 1984ba, R Jullien and M Kolbb, 
to be published, W D Brownc, private communication) with position space renormalisation 
group (PSRG) results for fractal dimension D ( d )  of Sutherland clusters moving with 
d,=O, 1,2. PSRG results for D ( d J  where d C = 2 D * + d ,  are given. These should be 
compared with the exact result D(dJ  = D* for d,  = 0, 1 ,2  where D* = In 4/1n(3/2) = 3.42 
(Ball and Witten 1984). 

d,=O d, = 1 d, = 2 
D ( d )  D ( d )  D ( d )  

d Simulation PSRG Simulation PS RG Simulation PSRG 

1 1 .oo 0.89 
2 1.53*0.04b 1.56 1.56 f 0.03" 1.41 1.42 f 0.03" 1.43 

1.60 * 0.05' 
3 1.98 i 0.04b 2.06 1.98 f 0.05" 1.87 1.78 f O.OSa 1.79 
4 2.32 * 0.04b 2.53 2.35 f 0.08" 2.3 1 2.04 f 0.08" 2.13 
5 3.03 2.5 f 0.2" 2.75 2.3 k0.2" 2.46 
6 3.44 2.7 f 0.2" 3.14 2.80 
7 3.89 3.61 3.15 
8 4.04 3.5 1 
9 3.90 
dc 3.82 3.97 3.84 

To evaluate D( d )  for Sutherland clusters we use a simple position space renormali- 
sation group scheme which requires only one length, the cluster radius of gyration. 
We first note that for Sutherland clusters D ( d )  can be written (Botet et a1 1984) 

where R, is the radius of gyration of a q cluster, Nq = 2,  is the number of particles 
in a q cluster and A, = R,+,/R,. The method we use for finding A, is sufficiently simple 
to be independent of q. Thus we are forced to assume the method is valid for large q 
and so gives a good approximation to A = 1imq+= A,. We now write A in place of A,. 

To find A we represent a q cluster in d dimensions by a sphere of radius r,. This 
radius is determined by the requirement that the sphere must have the correct kinetic 
cross-section for hitting another q cluster, itself represented by a sphere. In principle 
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we could model rq on any characteristic radius of the cluster which scales with the 
radius of gyration, but if a sphere is to be a good representation of a q cluster we 
must choose the definition of rq which is most pertinent to the aggregation. We assume 
that for d < d,  there exists for a q cluster a ‘hitching radius’ Rh(q) (Botet and Jullien 
1984). This radius is defined to be the maximum radius that has the property that 
there is zero probability that the centres of mass of two collided q clusters are less 
than 2&( q )  apart. Thus Rh( q )  defines an impenetrable hard sphere inside a q cluster. 
As a low-dimensional approximation (exact in one dimension) we assume that the 
centres of two collided q clusters are precisely 2&(q) apart. Of course actually the 
centres of mass of two collided q clusters are at least 2&(q) apart from the definition 
of &(q). &(q) is the radius that we use for rT Using this approximation a q +  1 
cluster is represented as two touching spheres each of radius rq To find rq+ l ,  i.e. to 
find the correct radius for approximating (renormalising) two touching spheres of 
radius rq by a single sphere of radius rq+l,  we require that both the unrenormalised 
and renormalised representations of a q +  1 cluster have the same cross-section to 
another q+  1 cluster. The latter q+  1 cluster is represented as a sphere of radius rq+l 
for simplicity. We write ul(rq, r + , )  for the cross-section of two touching spheres of 
radius rq to a single sphere of radius rq+l and we write u2(rq  + 1)  for the cross-section 
of one sphere of radius rq+l to another sphere of radius rq+l .  Thus we require 

v1(rq, rq+J = u2(rq+1) 

al( l ,A)=u2(A).  (3) 

or equivalently 

It is in the definitions of the cross-sections that cluster kinetics appear. Since solving 
(3) for A gives D ( d ) ,  the Sutherland cluster fractal dimension does depend on cluster 
kinetics in this approach in contrast to the earlier result of Hentschel and Deutch 
(1984) given by ( 1 )  and (2). 

For the kinetics of CLA excluded volume is used as the cross-section. That is, the 
cross-section of one cluster to another is taken to be the volume about one cluster in 
which the other cluster cannot sit without the two clusters intersecting. Thus ul(l ,  A )  
is the mutually excluded volume of two touching d-dimensional spheres of radius 1 
(one q + 1 cluster) and a sphere of radius A (the other, renormalised, q + 1 cluster). 
This is the volume in d dimensions of two intersecting spheres of radius 1 + A  with 
centres 2 apart. Similarly u2(A) is the mutually excluded volume of two spheres of 
radius A which is the volume of a sphere of radius 2A. With these definitions of U,(  1, A )  
and u2(A) for the kinetics of CLA equation (3) reduces to (see figure 1) 

(=) l + A  = 1 + (I,” cosd-’ 0 d(sin B ) / [ y 2  cosd-’ 0 d(sin 0)) (4) 

where 
s inO,=l / ( l+A).  

The values obtained for D ( d )  by solving (4) numerically are given in table 1. 
For Sutherland clusters which move linearly, the average ballistic cross-section is 

used for ul and u2. Thus ul( 1, A )  is the average ballistic cross-section of two touching 
d-dimensional spheres of radius 1 to a sphere of radius A. This is the isotropically 
averaged projected ‘area’ of two d-dimensional spheres of radius 1 + A with centres 2 
apart. Similarly u2(A) is the average ballistic cross-section of one sphere of radius A 
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to another sphere of radius A which is the isotropically averaged projected 'area' of 
a d-dimensional sphere of radius 2A. This is of course the volume of a (d -1 ) -  
dimensional sphere of radius 2A.  With these definitions of al( 1, A )  and a2(A) for 
ballistically moving clusters equation (3) reduces to (see figure 2 )  

where 

sin e,(+) = (sin +)/( 1 + A ) .  

The values obtained for D ( d )  by solving (5) numerically are given in table 1. The 
value D( 1)  was obtained by solving (5) in the limit d + 1,. 

For Sutherland clusters which move diffusively, aI and uz are diffusive cross- 
sections. aI is the steady state absorption rate by two touching spheres of radius 1, 
of spheres of radius A, from a field of unit concentration at infinity. That is, 

a , ( l , A ) =  V g , . d S ;  V 2 4 , = 0 ;  + l l s , = O ;  l i m g I ( r ) = l .  I,, r-a? 

Here SI is the surface of two intersecting spheres of radius 1 + A  with centres 2 apart. 
Similarly az is the steady state absorption rate by a sphere of radius A of spheres of 
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radius A from a field of unit concentration at infinity. Thus we have 

v2(A) = V& - d S ;  V Z 4 ,  = 0; #& = 0; lim &(r)  = 1 Is2 r-co 

where S,  is the surface of a sphere of radius 2 A .  To find A we use a crude approximation 
to 4I to calculate uI. This is because we could not find an exact, tractable solution 
41 to Laplace’s equation with the boundary conditions described above. The approxi- 
mation used also has the advantage that it makes sense for non-integral dimensions. 
We set (see figure 3) 

4j  ( r )  = A/I r + + A/I r - + B /  I rid-* + 1. 

We also set 

4 ~ ~ ( r )  = (2A+B) / l r ld -2+  1 

where 

(2A  + B )  = - 1 / ( 2 A  ) d - 2  

so the requirements that the total steady state flux through SI and S2 be equal and 
that +,Is2 = 0 are automatically satisfied. We have also satisfied V 2 4 1  = 0, limr+m + l ( r )  = 
1, V Z 4 ,  = 0 and limr+a 42( r )  = 1 .  However, the requirement that 411s, = 0 can only be 
approximately met. We determine the four unknowns A, B, a, and A by requiring ( 6 )  
be satisfied, the zero potential surface of 4I pass through the extremities of SI (points 
C on figure 3) and that this surface has the same values of a2x/ayZ and a4x/ay4  at 
points C as SI. This criterion is used as, for low d, most diffusing clusters hit the 
cluster tips. Thus we require at points C 

-~ 3441 ay4  + 6(a24 / ay,) (83 4/ a x a y 2 )  - 3 ( 8 2 4  1 a y 2 ) 2 ( a 2 + /  a x 2 )  

a 4 / a x  (a4 lax) ’  ( a 4 / a x ) ’  
= -3( 1 + A ) - 3 ,  

411c=0 and that ( 6 )  is satisfied. The values for D ( d )  obtained by solving these 
equations numerically are given in table 1. The value for D(2)  was obtained by solving 
them in the limit d + 2,.  

We see from table 1 that for each d the values for D( d )  obtained from simulations 
(Jullien er a1 1984b, R Jullien and M Kolb, to be published, W D Brown, private 
communication) decrease as d ,  increases as do the values for D ( d )  obtained from the 
above position space renormalisation group approach. This systematic variation in 
the simulation values of D ( d )  is expected since as d ,  increases clusters interpenetrate 
less before colliding and thus form more open structures. We also see that for each 
of d,=O, 1, 2 the agreement between values for D ( d )  obtained using this approach 
and those obtained from computer simulations worsens as d increases. This is expected 
as we have used the low-dimensional approximation that q clusters collide when their 
centres are precisely 2rq apart. The close agreement for low d for d , = 2  is no doubt 
a coincidence due to the rather ad hoc approximation used for r$l. However it should 
be noted that as d + 00 this approximation becomes an exact solution (with B = 0). It 
can be shown analytically that as d + 00, D ( d )  slowly approaches from above the 
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asymptote ( d  -d,)/2 rather than the correct asymptote D ( d )  =In 4/1n(3/2). This 
shows the method is self consistent; we made the low-dimensional approximation that 
Sutherland q clusters interpenetrate only to rq and for all values of d we find that 
D( d )  > ( d  - d,)/2 i.e. that Sutherland clusters are indeed opaque to each other for 
each of the three kinetics considered. 

Work is continuing on the application of the above position space renormalisation 
group approach to polydispersed models of cluster-cluster aggregation (P Meakin, to 
be published) and to diffusion limited aggregation (Witten and Sander 1981). 

Useful discussions with W D Brown are gratefully acknowledged. BRT would like to 
thank the Natural Sciences and Engineering Research Council (Canada) for a post- 
graduate scholarship. 
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